Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.688
Filtrar
1.
Cureus ; 16(3): e56930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38665704

RESUMO

Introduction Collagen synthesis is vital for restoring musculoskeletal tissues, particularly in tendon and ligamentous structures. Tissue engineering utilizes scaffolds for cell adhesion and differentiation. Although synthetic scaffolds offer initial strength, their long-term stability is surpassed by biological scaffolds. Combining polycaprolactone (PCL) toughness with collagen in scaffold design, this study refines fabrication via electrospinning, aiming to deliver enduring biomimetic matrices for widespread applications in musculoskeletal repair. Methods Electrospinning employed four solutions with varied collagen and PCL concentrations, dissolved in chloroform, methanol, and hexafluoro-2-propanol. Solutions were combined to yield 60 mg/mL concentrations with different collagen/PCL ratios. Electrospinning at 12-14kV voltage produced scaffolds, followed by vacuum-drying. Collagen coating was applied to PCL and 15% collagen/PCL scaffolds using a 0.1% collagen solution. SEM characterized fiber morphology, tensile testing was conducted to determine the mechanical properties of the scaffold, and Fourier-transform infrared (FTIR) spectroscopy analyzed scaffold composition. Atomic force microscopy (AFM) analyzed the stiffness properties of individual fibers, and a finite element model was developed to predict the mechanical properties. Cell culture involved seeding human bone marrow mesenchymal stem cells onto scaffolds, which were assessed through Alamar Blue assay and confocal imaging. Results Various scaffolds (100% PCL, PCL-15% collagen, PCL-25% collagen, PCL-35% collagen) were fabricated to emulate the extracellular matrix, revealing collagen's impact on fiber diameter reduction with increasing concentration. Tensile testing highlighted collagen's initial enhancement of mechanical strength, followed by a decline beyond PCL-15% collagen. FTIR spectroscopy detected potential hydrogen bonding between collagen and PCL. A finite element model predicted scaffold response to external forces which was validated by the tensile test data. Cell viability and proliferation assays demonstrated successful plating on all scaffolds, with optimal proliferation observed in PCL-25% collagen. Confocal imaging confirmed stem cell integration into the three-dimensional material. Collagen coating preserved nanofiber morphology, with no significant changes in diameter. Coating of collagen significantly altered the tensile strength of the scaffolds at the macro scale. AFM highlighted stiffness differences between PCL and collagen-coated PCL mats at the single fiber scale. The coating process did not significantly enhance initial cell attachment but promoted increased proliferation on collagen-coated PCL scaffolds. Conclusion The study reveals collagen-induced mechanical and morphological alterations, influencing fiber alignment, diameter, and chemical composition while emphasizing scaffolds' vital role in providing a controlled niche for stem cell proliferation and differentiation. The optimization of each of these scaffold characteristics and subsequent finite element modeling can lead to highly repeatable and ideal scaffold properties for stem cell integration and proliferation.

2.
Int J Biol Macromol ; 268(Pt 1): 131688, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642688

RESUMO

Large bone defects, often resulting from trauma and disease, present significant clinical challenges. Electrospun fibrous scaffolds closely resembling the morphology and structure of natural ECM are highly interested in bone tissue engineering. However, the traditional electrospun fibrous scaffold has some limitations, including lacking interconnected macropores and behaving as a 2D scaffold. To address these challenges, a sponge-like electrospun poly(L-lactic acid) (PLLA)/polycaprolactone (PCL) fibrous scaffold has been developed by an innovative and convenient method (i.e., electrospinning, homogenization, progen leaching and shaping). The resulting scaffold exhibited a highly porous structure (overall porosity = 85.9 %) with interconnected, regular macropores, mimicking the natural extracellular matrix. Moreover, the incorporation of bioactive glass (BG) particles improved the hydrophilicity (water contact angle = 79.7°) and biocompatibility and promoted osteoblast cell growth. In-vitro 10-day experiment revealed that the scaffolds led to high cell viability. The increment of the proliferation rates was 195.4 % at day 7 and 281.6 % at day 10. More importantly, Saos-2 cells could grow, proliferate, and infiltrate into the scaffold. Therefore, this 3D PLLA/PCL with BG sponge holds great promise for bone defect repair in tissue engineering applications.

3.
Int J Biol Macromol ; 267(Pt 2): 131649, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636751

RESUMO

The colorless ammonia gas has been a significant intermediate in the industrial sector. However, prolonged exposure to ammonia causes harmful effects to organs or even death. Herein, an environmentally friendly solid-state ammonia sensor was developed utilizing colorimetric polycaprolactone-co-polylactic acid nanofibrous membrane. Pomegranate (Punica granatum L.) peel contains anthocyanin (ACN) as a naturally occurring spectroscopic probe. A mordant (potassium aluminum sulfate) is used to immobilize the anthocyanin direct dyestuff inside nanofibers, generating mordant/anthocyanin (M/ACN) coordinated complex nanoparticles. When exposed to ammonia, the color change of anthocyanin-encapsulated polycaprolactone-co-polylactic acid nanofibrous membrane from purple to transparent was examined by absorbance spectra and CIE Lab color parameters. With a quick colorimetric shift, the polycaprolactone-co-polylactic acid fabric exhibits a detection limit of 5-150 mg/L. The absorbance spectra showed a hypsochromic shift when exposed to ammonia, displaying an absorption shift from 559 nm to 391 nm with an isosbestic point of 448 nm. Scanning electron microscopy (SEM) images revealed that the polycaprolactone-co-polylactic acid nanofibers had a diameter of 75-125 nm, whereas transmission electron microscopy (TEM) images revealed that M/ACN nanoparticles exhibited diameters of 10-20 nm.

4.
J Biomater Appl ; : 8853282241248778, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659361

RESUMO

Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38659385

RESUMO

Here, an artificial intelligence (AI)-based approach was employed to optimize the production of electrospun scaffolds for in vivo wound healing applications. By combining polycaprolactone (PCL) and poly(ethylene glycol) (PEG) in various concentration ratios, dissolved in chloroform (CHCl3) and dimethylformamide (DMF), 125 different polymer combinations were created. From these polymer combinations, electrospun nanofiber meshes were produced and characterized structurally and mechanically via microscopic techniques, including chemical composition and fiber diameter determination. Subsequently, these data were used to train a neural network, creating an AI model to predict the optimal scaffold production solution. Guided by the predictions and experimental outcomes of the AI model, the most promising scaffold for further in vitro analyses was identified. Moreover, we enriched this selected polymer combination by incorporating antibiotics, aiming to develop electrospun nanofiber scaffolds tailored for in vivo wound healing applications. Our study underscores three noteworthy conclusions: (i) the application of AI is pivotal in the fields of material and biomedical sciences, (ii) our methodology provides an effective blueprint for the initial screening of biomedical materials, and (iii) electrospun PCL/PEG antibiotic-bearing scaffolds exhibit outstanding results in promoting neoangiogenesis and facilitating in vivo wound treatment.

6.
J Dent Sci ; 19(2): 1096-1104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618126

RESUMO

Background/purpose: Peripheral neural regeneration is an interesting and challenging field. The aim of this study was to investigate the interactions of neural-like PC12 cells and Poly-D-Lysine (PDL)-coated 3D-printed polycaprolactone (PCL) scaffolds with different inner diameters of half tubular array (HTA) (0, 200, 300, and 400 µm), respectively. Materials and methods: This study used the fused deposition modeling (FDM) technique with 3D-printing to fabricate the thermoplastic polymer. Scaffold properties were measured by mechanical testing, and coating quality was observed under a scanning electron microscope (SEM). PC12 cell biocompatibility was examined by an MTT assay. Cell differentiation was evaluated by immunofluorescence staining. Results: The cell viability of PC12 cells on PDL-coated PCL scaffolds with a 200-µm inner diameter of HTA was shown with significant differences (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001) than other PCL groups at all experimental dates. The SEM observation showed that PDL-coated PCL scaffolds with 200-µm inner diameters of HTA promoted cell adhesion. An immunofluorescence staining of PC12 cells on the PDL-coated PCL scaffold with a 200-µm inner diameter of the HTA group showed that it stimulated PC12 cells for neurite formation much better than the other groups.A PDL-coated PCL scaffold with a 200-µm inner diameter of HTA can promote the growth and differentiation of PC12 cells better than other groups. It indicated that PDL-coated PCL scaffolds with a 200-µm inner diameter HTA can be used for further neural regeneration application.

7.
Cartilage ; : 19476035241246609, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624072

RESUMO

OBJECTIVE: The use of synthetic bone substitute material (BSM) as osteotomy gap fillers have been reported to improve outcomes in medial opening wedge high tibial osteotomy (MOWHTO). This study aims to evaluate the early radiological outcomes (bone union) and complication rates of the novel patient-specific 3D-printed honeycomb-structured polycaprolactone and tricalcium phosphate (PCL-TCP) synthetic graft compared to allogeneic bone grafts as an osteotomy gap filler in MOWHTO. METHODS: A retrospective matched-pair analysis of patients who underwent MOWHTO with either PCL-TCP synthetic graft or allogenic femoral head allograft as osteotomy gap filler was performed. The osteotomy gap was split into equal zones (Zone 1-5), and bone union was evaluated on anteroposterior radiographs based on the van Hemert classification at 1, 3, 6, and 12 months postoperatively. Postoperative complications including infection, lateral hinge fractures, and persistent pain was measured. The study and control group were matched for age, smoking status, diabetes mellitus, and osteotomy gap size. RESULTS: Significantly greater bone union progression was observed in the PCL-TCP group than in the allograft group at 1 month (Zones 1-3), 3 months (Zones 1-4), 6 months (Zones 1-2, 4), and 12 months (Zones 2-3, 5) postoperatively (P < 0.05). No significant difference in complications rates was noted between the two groups at 1 year. CONCLUSIONS: Bone union rates observed in patients who underwent MOWHTO with the PCL-TCP synthetic graft osteotomy gap filler were superior to those in the allograft group at 1 year postoperatively, with no significant difference in complication rates (postoperative infection, lateral hinge fractures, and persistent pain).

8.
Pharm Res ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637438

RESUMO

INTRODUCTION: Diabetic foot infection (DFI) is one of the complications of diabetes mellitus. Clindamycin (CLY) is one of the antibiotics recommended to treat DFI, but CLY given orally and intravenously still causes many side effects. METHODS: In this study, we encapsulated CLY in a bacteria sensitive microparticle system (MP-CLY) using polycaprolactone (PCL) polymer. MP-CLY was then delivered in a separable effervescent microarray patch (MP-CLY-SEMAP), which has the ability to separate between the needle layer and separable layer due to the formation of air bubbles when interacting with interstitial fluid in the skin. RESULT: The characterization results of MP-CLY proved that CLY was encapsulated in large amounts as the amount of PCL polymer used increased, and there was no change in the chemical structure of CLY. In vitro release test results showed increased CLY release in media cultured with Staphylococcus aureus bacteria and showed controlled release. The characterization results of MPCLY-SEMAP showed that the developed formula has optimal mechanical and penetration capabilities and can separate in 56 ± 5.099 s. An ex vivo dermatokinetic test on a bacterially infected skin model showed an improvement of CLY dermatokinetic profile from MP-CLY SEMAP and a decrease in bacterial viability by 99.99%. CONCLUSION: This research offers proof of concept demonstrating the improved dermatokinetic profile of CLY encapsulated in a bacteria sensitive MP form and delivered via MP-CLY-SEMAP. The results of this research can be developed for future research by testing MP-CLY-SEMAP in vivo in appropriate animal models.

9.
Small ; : e2400399, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607266

RESUMO

To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.

10.
Int J Nanomedicine ; 19: 1683-1697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445226

RESUMO

Introduction: Cartilage regeneration is a challenging issue due to poor regenerative properties of tissues. Electrospun nanofibers hold enormous potentials for treatments of cartilage defects. However, nanofibrous materials used for the treatment of cartilage defects often require physical and/or chemical modifications to promote the adhesion, proliferation, and differentiation of cells. Thus, it is highly desirable to improve their surface properties with functionality. We aim to design hydrophilic, adhesive, and compound K-loaded nanofibers for treatments of cartilage defects. Methods: Hydrophilic and adhesive compound K-containing polycaprolactone nanofibers (CK/PCL NFs) were prepared by coatings of gallic acid-conjugated chitosan (CHI-GA). Therapeutic effects of CHI-GA/CK/PCL NFs were assessed by the expression level of genes involved in the cartilage matrix degradation, inflammatory response, and lipid accumulations in the chondrocytes. In addition, Cartilage damage was evaluated by safranin O staining and immunohistochemistry of interleukin-1ß (IL-1ß) using OA animal models. To explore the pathway associated with therapeutic effects of CHI-GA/CK/PCL NFs, cell adhesion, phalloidin staining, and the expression level of integrins and peroxisome proliferator-activated receptor (PPARs) were evaluated. Results: CHI-GA-coated side of the PCL NFs showed hydrophilic and adhesive properties, whereas the unmodified opposite side remained hydrophobic. The expression levels of genes involved in the degradation of the cartilage matrix, inflammation, and lipogenesis were decreased in CHI-GA/CK/PCL NFs owing to the release of CK. In vivo implantation of CHI-GA/CK/PCL NFs into the cartilage reduced cartilage degradation induced by destabilization of the medial meniscus (DMM) surgery. Furthermore, the accumulation of lipid deposition and expression levels of IL-1ß was reduced through the upregulation of PPAR. Conclusion: CHI-GA/CK/PCL NFs were effective in the treatments of cartilage defects by inhibiting the expression levels of genes involved in cartilage degradation, inflammation, and lipogenesis as well as reducing lipid accumulation and the expression level of IL-1ß via increasing PPAR.


Assuntos
Quitosana , Ginsenosídeos , Nanofibras , Animais , Receptores Ativados por Proliferador de Peroxissomo , Cartilagem , Inflamação/tratamento farmacológico , Regeneração , Lipídeos
11.
Adv Healthc Mater ; : e2303666, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431774

RESUMO

Carbene-based bioadhesives have favourable attributes for tissue adhesion, including non-specific bonding to wet and dry tissues, but suffer from relatively weak fracture strength after photocuring. Light irradiation of carbene-precursor (diazirine) also creates inert side products that are absent under thermal activation. Herein, a dual activation method combines light irradiation at elevated temperatures for the evaluation of diazirine depletion and effects on cohesive properties. A customized photo/thermal-rheometer evaluates viscoelastic properties, correlated to the kinetics of carbene:diazoalkane ratios via 19 F NMR). The latter exploits the sensitive -CF3 functional group to determine joule-based light/temperature kinetics on trifluoroaryl diazirine consumption. The combination of heat and photoactivation produced bioadhesives that are 3× tougher compared to control. Dual thermal/light irradiation may be a strategy to improve viscoelastic dissipation and toughness of photo-activated adhesive resins.

12.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474503

RESUMO

A simple and efficient method for the synthesis of biodegradable, highly branched polycaprolactone (PCL) is presented. The solvent-free (bulk) reaction was carried out via ring opening polymerization (ROP), catalyzed by tin octanoate Sn(Oct)2, and it employed hyperbranched polyamide (HPPA) as a macro-initiator. The core-shell structure of the obtained products (PCL-HPPA), with the hyperbranched HPPA core and linear PCL chains as shell, was in the focus of the product characterization. 1H nuclear magnetic resonance (1H NMR) and elemental analysis confirmed the covalent incorporation of the HPPA in the products, as well as a high degree of grafting conversion of its amino functional groups. Confocal Raman Micro spectroscopy, and especially Time-of-Flight Secondary Ion Mass Spectrometry, further supported the existence of a core-shell structure in the products. Direct observation of macromolecules by means of cryogenic transmission electron microscopy, as well as gel permeation chromatography (GPC), suggested the existence of a minor 'aggregated' product fraction with multiple HPPA cores, which was attributed to transesterification reactions. Differential scanning calorimetry, as well as X-ray diffraction, demonstrated that the PCL-HPPA polymers displayed a similar degree of crystallinity to linear neat PCL, but that the branched products possessed smaller and less regular crystallites.

13.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475389

RESUMO

The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.

14.
Int J Pharm ; 655: 123978, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38458406

RESUMO

Peripheral nerve injury is a critical condition that can disrupt nerve functions. Despite the progress in engineering artificial nerve guidance conduits (NGCs), nerve regeneration remains challenging. Here, we developed new nanofibrous NGCs using polycaprolactone (PCL) and chitosan (CH) containing piracetam (PIR)/vitamin B12(VITB12) with an electrospinning method. The lumen of NGCs was coated by hyaluronic acid (HA) to promote regeneration in sciatic nerve injury. The NGCs were characterized via Scanning Electron Microscopy (SEM), Fourier transform infrared (FTIR), tensile, swelling, contact angle, degradation, and drug release tests. Neuronal precursor cell line (PCL12 cell) and rat mesenchymal stem cells derived from bone marrow (MSCs) were seeded on the nanofibrous conduits. After that, the biocompatibility of the NGCs was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, and SEM images. The SEM demonstrated that PCL/CH/PIR/VITB12 NGCs had nonaligned, interconnected, smooth fibers. The mechanical properties of these NGCs were similar to rat sciatic nerve. These conduits had an appropriate swelling and degradation rate. The In Vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VITB12 NGCs towards PC12 cells and MSCs. The in vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VIT B12 NGCs towards MSCs and PC12 cells. To analyze functional efficacy, NGCs were implanted into a 10 mm Wistar rat sciatic nerve gap and bridged the proximal and distal stump of the defect. After three months, the results of sciatic functional index (55.3 ± 1.8), hot plate latency test (5.6 ± 0.5 s), gastrocnemius muscle wet weight-loss (38.57 ± 1.6 %) and histopathological examination using hematoxylin-eosin (H&E) /toluidine blue/ Anti-Neurofilament (NF200) staining demonstrated that the produced conduit recovered motor and sensory functions and had comparable nerve regeneration compared to the autograft that can be as the gold standard to bridge the nerve gaps.


Assuntos
Quitosana , Nanofibras , Traumatismos dos Nervos Periféricos , Piracetam , Ratos , Animais , Ratos Wistar , Ácido Hialurônico , Vitamina B 12 , Nervo Isquiático , Tecidos Suporte , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/patologia , Células PC12 , Regeneração Nervosa
15.
Biomater Adv ; 159: 213816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430722

RESUMO

Tissue engineering (TE) has sparked interest in creating scaffolds with customizable properties and functional bioactive sites. However, due to limitations in medical practices and manufacturing technologies, it is challenging to replicate complex porous frameworks with appropriate architectures and bioactivity in vitro. To address these challenges, herein, we present a green approach that involves the amino acid (l-lysine) initiated polymerization of ɛ-caprolactone (CL) to produce modified polycaprolactone (PCL) with favorable active sites for TE applications. Further, to better understand the effect of morphology and porosity on cell attachment and proliferation, scaffolds of different geometries with uniform and interconnected pores are designed and fabricated, and their properties are evaluated in comparison with commercial PCL. The scaffold morphology and complex internal micro-architecture are imaged by micro-computed tomography (micro-CT), revealing pore size in the range of ~300-900 µm and porosity ranging from 30 to 70 %, while based on the geometry of scaffolds the compressive strength varied from 143 ± 19 to 214 ± 10 MPa. Additionally, the degradation profiles of fabricated scaffolds are found to be influenced by both the chemical nature and product design, where Lys-PCL-based scaffolds with better porosity and lower crystallinity degraded faster than commercial PCL scaffolds. According to in vitro studies, Lys-PCL scaffolds have produced an environment that is better for cell adhesion and proliferation. Moreover, the scaffold design affects the way cells interact; Lys-PCL with zigzag geometry has demonstrated superior in vitro vitality (>90 %) and proliferation in comparison to other designs. This study emphasizes the importance of enhancing bioactivity while meeting morphology and porosity requirements in the design of scaffolds for tissue engineering applications.


Assuntos
Poliésteres , Engenharia Tecidual , Tecidos Suporte , Engenharia Tecidual/métodos , Tecidos Suporte/química , Lisina , Microtomografia por Raio-X
16.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542840

RESUMO

In this work, diatomaceous earth (Diat) was explored as filler for polycaprolactone (PCL) to obtain composite green materials with promising viscoelastic and thermal properties. The composites were prepared by blending variable Diat amounts (5, 15 and 50 wt%) with a molten PCL matrix. The viscoelastic characteristics of PCL/Diat hybrids were studied by Dynamic Mechanical Analysis (DMA) under an oscillatory regime, while the thermal properties were determined by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). We detected that the presence of Diat enhances the energy storage capacity of PCL for temperatures lower than the polymer melting point. Both DMA and DSC data revealed that the PCL melting temperature is slightly affected by the Diat addition, while the TGA results showed that the thermal stability of the polymer can be significantly improved by mixing PCL with diatomaceous earth. Moreover, we observed that the dispersion of Diat into the matrix favors the crystallization process of PCL. Interestingly, the improvements of PCL properties (elasticity, thermal stability, and crystallinity) are proportional to the Diat concentration of the composites. These findings reflect the interfacial compatibility between PCL and diatomaceous earth. In conclusion, this study highlights that the preparation of PCL/Diat hybrids by melt blending is suitable for the development of composite materials for technological applications, including the remediation of air pollutants within museum environments.

17.
Polymers (Basel) ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543336

RESUMO

Hydroxyapatite/polycaprolactone (HA/PCL) composites have been extensively explored in laser powder bed fusion (L-PBF) for bone tissue engineering. However, conventional mechanical mixing methods for preparing composite powders often yield inhomogeneous compositions and suboptimal flowability. In this study, HA/PCL powders were prepared and optimized for L-PBF using the modified emulsion solvent evaporation method. The morphology, flowability and thermal and rheological properties of the powders were systematically investigated, along with the mechanical and biological properties of the fabricated specimens. The HA/PCL powders exhibited spherical morphologies with a homogeneous distribution of HA within the particles. The addition of small amounts of HA (5 wt% and 10 wt%) enhanced the processability and increased the maximum values of the elastic modulus and yield strength of the specimens from 129.8 MPa to 166.2 MPa and 20.2 MPa to 25.1 MPa, respectively, while also improving their biocompatibility. However, excessive addition resulted in compromised sinterability, thereby affecting both mechanical and biological properties.

18.
Biomed Mater ; 19(3)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38498949

RESUMO

Polycaprolactone (PCL) is a suitable material for bone repair due to good biocompatibility and mechanical properties. However, low bioactivity and hydrophobicity pose major challenges for its biomedical applications. To overcome these limitations, PCL-based scaffolds loaded with bioactive agents have been developed. Salicin (Sal) is an anti-inflammatory and analgesic herbal glycoside with osteogenic potential. In the present study, we aimed to produce a Sal-laden PCL (PCL-Sal) scaffold for bone healing applications. Three-dimensional scaffolds were produced and their biocompatibility, and physical-chemical characteristics were determined. The osteogenic potential of the PCL (PCL) and PCL-Sal scaffolds was evaluated using bone marrow mesenchymal stem cells (BMSCs). Scaffolds were implanted into a 5 mm bone defect created in the femur of adult rats, and the new bone fraction was determined using micro-computed tomography scanning at one-month follow-up. PCL-Sal scaffold had a structure, porosity, and fiber diameter suitable for bone construction. It also possessed a higher rate of hydrophilicity and bioactivity compared to the PCL, providing a suitable surface for the proliferation and bone differentiation of BMSCs. Furthermore, PCL-Sal scaffolds showed a higher capacity to scavenge free radicals compared to PCL. The improved bone healing potential of the PCL-Sal scaffold was also confirmed according toin vivoimplantation results. Our findings revealed that the Sal-laden implant could be considered for bone repair due to desirable characteristics of Sal such as hydrophilicity, surface modification for cell attachment, and antioxidant properties.


Assuntos
Álcoois Benzílicos , Glucosídeos , Poliésteres , Tecidos Suporte , Ratos , Animais , Tecidos Suporte/química , Microtomografia por Raio-X , Poliésteres/química , Osteogênese , Fêmur , Impressão Tridimensional
19.
Int J Pharm ; 655: 124052, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552751

RESUMO

Antimicrobial peptides (AMPs) are promising novel agents for targeting a wide range of pathogens. In this study, microalgal peptides derived from native microalgae were incorporated into polycaprolactone (PCL) with ƙ-Carrageenan (ƙ-C) forming nanofibers using the electrospinning method. The peptides incorporated in the nanofibers were characterized by fourier infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy (SEM), and contact angle measurement. The results showed that peptides with molecular weights < 10 kDa, when loaded into nanofibers, exhibited lower wettability. The SEM analysis revealed a thin, smooth, interconnected bead-like structures. The antimicrobial activity of the electrospun nanofibers was evaluated through disc diffusion, and minimum inhibitory activity against Escherichia coli (MTTC 443), and Staphylococcus aureus (MTTC 96), resulting in zones of inhibition of 24 ± 0.5 mm and 14 ± 0.5 mm, respectively. The in vitro biocompatibility of the synthesized nanofibers was confirmed using in HEK 293 cell lines with an increased cell viability. Interestingly, the fibers also exhibited a significant wound-healing properties when used in vitro scratch assays. In conclusion, algal peptides incorporated with PCL/ ƙ-C were found to exhibit antimicrobial and biocompatible biomaterials for wound healing applications.


Assuntos
Anti-Infecciosos , Microalgas , Nanofibras , Humanos , Carragenina , Nanofibras/química , Células HEK293 , Antibacterianos/farmacologia , Poliésteres/química , Cicatrização , Anti-Infecciosos/farmacologia , Peptídeos/farmacologia
20.
J Orthop Res ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522018

RESUMO

Segmental bone defects, often clinically treated with nondegradable poly(methylmethacrylate) (PMMA) in multistage surgeries, present a significant clinical challenge. Our study investigated the efficacy of 3D printed biodegradable polycaprolactone fumarate (PCLF)/PCL spacers in a one-stage surgical intervention for these defects, focusing on early bone regeneration influenced by spacer porosities. We compared nonporous PCLF/PCL and PMMA spacers, conventionally molded into cylinders, with porous PCLF/PCL spacers, 3D printed to structurally mimic segmental defects in rat femurs for a 4-week implantation study. Histological analysis, including tissue staining and immunohistochemistry with bone-specific antibodies, was conducted for histomorphometry evaluation. The PCLF/PCL spacers demonstrated compressive properties within 6 ± 0.5 MPa (strength) and 140 ± 15 MPa (modulus). Both porous PCLF/PCL and Nonporous PMMA formed collagen-rich membranes (PCLF/PCL: 92% ± 1.3%, PMMA: 86% ± 1.5%) similar to those induced in the Masquelet technique, indicating PCLF/PCL's potential for one-stage healing. Immunohistochemistry confirmed biomarkers for tissue regeneration, underscoring PCLF/PCL's regenerative capabilities. This research highlights PCLF/PCL scaffolds' ability to induce membrane formation in critical-sized segmental bone defects, supporting their use in one-stage surgery. Both solid and porous PCLF/PCL spacers showed adequate compressive properties, with the porous variants exhibiting BMP-2 expression and woven bone formation, akin to clinical standard PMMA. Notably, the early ossification of the membrane into the pores of porous scaffolds suggests potential for bone interlocking and regeneration, potentially eliminating the need for a second surgery required for PMMA spacers. The biocompatibility and biodegradability of PCLF/PCL make them promising alternatives for treating critical bone defects, especially in vulnerable patient groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...